electrolytes

An electrolyte is a substance that ionizes when dissolved in suitable ionizing solvents such as water. This includes most soluble salts, acids, and bases. Some gases, such as hydrogen chloride, under conditions of high temperature or low pressure can also function as electrolytes. Electrolyte solutions can also result from the dissolution of some biological (e.g., DNA, polypeptides) and synthetic polymers (e.g., polystyrene sulfonate), termed polyelectrolytes, which contain charged functional groups. A substance that dissociates into ions in solution and acquires the capacity to conduct electricity. Sodium, potassium, chloride, calcium, and phosphate are examples of electrolytes, informally known as lytes. Electrolyte replacement is needed when a patient has prolonged vomiting or diarrhea, and as a response to strenuous athletic activity. Commercial electrolyte solutions are available, particularly for sick children (solutions such as Pedialyte) and athletes (sports drinks, such as Gatorade). Electrolyte monitoring is important in treatment of anorexia and bulimia. Electrolyte solutions are normally formed when a salt is placed into a solvent such as water and the individual components dissociate due to the thermodynamic interactions between solvent and solute molecules, in a process called solvation. For example, when table salt (sodium chloride), NaCl, is placed in water, the salt (a solid) dissolves into its component ions, according to the dissociation reaction NaCl(s) → Na+(aq) + Cl−(aq) It is also possible for substances to react with water, producing ions. For example, carbon dioxide gas dissolves in water to produce a solution that contains hydronium, carbonate, and hydrogen carbonate ions. Note that molten salts can be electrolytes, as well. For instance, when sodium chloride is molten, the liquid conducts electricity. In particular, ionic liquids, which are molten salts with melting points below 100 °C, are a type of highly conductive non-aqueous electrolytes and thus have found more and more applications in fuel cells and batteries. An electrolyte in a solution may be described as concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak. The properties of electrolytes may be exploited using electrolysis to extract constituent elements and compounds contained within the solution.